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Abstract—This paper demonstrates the feasibility of a side-
channel attack to infer keystrokes on touch screen leveraging
an off-the-shelf smartphone. Although there exist some studies
on keystroke eavesdropping attacks on touch screen, they are
mainly direct eavesdropping attacks, i.e., require the device of
victims compromised to provide side-channel information for
the adversary, which are hardly launched in practical scenar-
ios. In this work, we show the practicability of an indirect
eavesdropping attack, KeyListener, which infers keystrokes on
QWERTY keyboards of touch screen leveraging audio devices on
a smartphone. We investigate the attenuation of acoustic signals,
and find that a user’s keystroke fingers can be localized through
the attenuation of acoustic signals received by the microphones
in the smartphone. We then utilize the attenuation of acoustic
signals to localize each keystroke, and further analyze errors
induced by ambient noises. To improve the accuracy of keystroke
localization, KeyListener further tracks finger movements dur-
ing inputs through phase change and Doppler effect to reduce
errors of acoustic signal attenuation-based keystroke localization.
In addition, a binary tree-based search approach is employed
to infer keystrokes in a context-aware manner. The proposed
keystroke eavesdropping attack is robust to various environments
without the assistance of additional infrastructures. Extensive
experiments demonstrate that the accuracy of keystroke inference
in top-5 candidates can approach 90% with a top-5 error rate
of around 6%, which is a strong indication of the possible user
privacy leakage of inputs on QWERTY keyboard.

I. INTRODUCTION

Mobile devices equipped with touch screen become more
popular and pervasive in the daily lives. These devices are
commonly used to input private information, such as pay-
ment information, email/chatting messages, and personal doc-
uments. According to Federal Reserve System, 43% users
in the USA adopt mobile banking for their daily financial
activities in 2015 [1]. Moreover, there is a report showing that
around 1,500 million users chat online monthly through instant
messaging APPs on smartphones [2]. Instead of stationary
devices staying at a physically-secure location, mobile devices
are often carried by users traveling to different places, where
the devices are exposed to possible eavesdropping attacks,
such as WiFi-based password eavesdropping, etc.

Currently, most existing studies [3]–[6] about keystroke
eavesdropping attacks mainly concentrate on physical key-
boards. Compared with a physical keyboard, the size of a
virtual keyboard on touch screen is far smaller, and keystrokes

on touch screen induce little sound and vibration. Thus, new
challenges are introduced in keystroke eavesdropping attacks
on virtual keyboards of touch screen. There are some existing
works [7], [8] about keystroke eavesdropping attacks on touch
screen, which are based on keystroke patterns in the motion
sensor data on victims’ smartphones. However, these works all
involve a direct eavesdropping attack, i.e., the sensor data on
the victim’s device are compromised to provide side-channel
information about keystrokes for the adversary, which is hardly
practical and limits the impact of such attacks. Recently,
Li et al. [9] propose an indirect eavesdropping attack, i.e.,
without the requirement of side-channel information directly
from victims’ devices, to identify PIN inputs on touch screen
based on Channel State Information of WiFi signals. However,
the attack scenario of this work is constrained to the coverage
of WiFi infrastructure, and the attack is only for 9-key PIN
keyboard instead of QWERTY virtual keyboard.

Toward this end, we explore how to launch a side-channel
attack leveraging audio devices from smartphones to infer
keystrokes on QWERTY keyboards of touch screen. Such an
attack is powerful without the assistance of additional devices
and resilient to various environments. Since acoustic signals
have advantages of strong penetrability and slow propagating
velocity, the signals have been utilized in recent researches,
such as object movement tracking [10]–[12], inconspicuous
attack to voice assistants [13], and user authentication [14],
[15], etc. Thus, we consider whether it is feasible to utilize
acoustic signals for keystroke eavesdropping attacks. To real-
ize such an attack leveraging acoustic signals, we face several
challenges in practice. First, the attack should utilize limited
audio devices on smartphones to localize keystrokes during
inputs. Second, the attack needs to resist ambient noises in
received acoustic signals. Finally, the attack ought to identify
keystrokes without training information from victims.

In this paper, we first describe the attack scenario and
analyze the feasibility of utilizing acoustic signals to infer
keystrokes on QWERTY keyboard of touch screen. Through
the analysis, we find that the attenuation of acoustic signals can
be used to localize each keystroke during inputs. Inspired by
the observation, we demonstrate a possible side-channel attack,
KeyListener, which can infer keystrokes on QWERTY key-
board of touch screen through audio devices on a smartphone.
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In KeyListener, the speaker of an adversary’s smartphone
first emits near-ultra acoustic signals (inaudible for humans),
and then the signals are received by two microphones of the
smartphone. KeyListener first mitigates multipath reflections
in received acoustic signals, and segments received acoustic
signals into each keystroke and finger movement window, so
as to extract the acoustic signal of each input behavior. Then,
each keystroke during victims’ inputs is localized based on
the attenuation of acoustic signals. Since our attack aims to
be robust to various environments, we analyze the impact
of error induced by ambient noises in the keystroke local-
ization, and construct an area for a localized keystroke, i.e,
keystroke range, which is the range of error in the acoustic
signal attenuation-based keystroke localization. To improve the
accuracy of keystroke localization, we further analyze users’
finger behaviors during inputs, and find the finger movement
between two keystrokes contributes to reducing errors of the
keystroke localization. Specifically, KeyListener first tracks
the range of a finger movement between two keystrokes
via phase changes and Doppler shifts of acoustic signals,
and then intersects the range of the finger movement with
the localized keystroke range to reduce the error. Finally,
based on the keys covered by the keystroke range of each
finger keystroke, the adversary can infer victims’ continuous
keystrokes in a context-aware manner through a binary tree-
based search approach. Our extensive experiments demonstrate
that KeyListener is robust and efficient to infer keystrokes
on QWERTY keyboard of touch screen in real environments.

We highlight our contribution in this paper as follows.
• We demonstrate that a commercial smartphone can re-

cover keystrokes on QWERTY keyboard of touch screen
through acoustic signals.

• We exploit the attenuation of acoustic signals to localize
keystrokes and analyze errors induced by ambient noises
in the keystroke localization.

• We improve the accuracy of keystroke localization
through tracking finger movement behaviors during in-
puts based on phase changes and Doppler effect of
acoustic signals.

• We conduct experiments in real environments. The results
show that the proposed keystroke inference attack can
approach 90% accuracy under top-5 word candidates.

The rest of this paper is organized as follows. We first show
the preliminary in Section II. Then, Section III presents the
system design of KeyListener. The evaluation of the system
is presented in Section IV. Finally, we review several related
work in Section V and make a conclusion in Section VI.

II. PRELIMINARY

In this section, we introduce the attack scenario and basic
principles of inferring keystrokes on QWERTY keyboard of
touch screen through acoustic signals.

A. Attack Scenario

The keystroke eavesdropping attack scenario is considered
as that an adversary seeks to infer a victim’s keystrokes on
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Fig. 1. Basic principles of keystroke localization based on attenuation of
acoustic signals.

QWERTY keyboard of touch screen through audio devices
integrated in a smartphone. We assume an adversary takes a
smartphone and is inconspicuously close to a victim’s touch-
capable devices. Since the victim tries to avoid the leakage
of his/her inputs, the adversary cannot eavesdrop the inputs
through line-of-sight observation. Two representative scenarios
which validate the plausibility of the assumption are: (1) the
adversary inconspicuously sits beside the victim in a confined
setting such as library and canteen, where physical proximity is
not suspicious, and uses a smartphone to perform the keystroke
eavesdropping attack on the victim’s input on touch screen;
(2) the adversary inconspicuously stands beside the victim
while queuing for payment through a mobile device, and
uses a smartphone to perform the password eavesdropping
attack when the victim pays the bill. Since mobile devices
can be carried by victims to arbitrary places, an adversary
should perform the keystroke eavesdropping attack without
environmental restriction and the assistance of additional in-
frastructures other than a smartphone.

B. Basic Principles of Acoustic Signal Attenuation-based
Keystroke Localization

To implement the side-channel attack, i.e., keystroke eaves-
dropping attack, we present the basic principles of keystroke
localization on QWERTY keyboard of touch screen through
the attenuation of acoustic signals via a smartphone.

Recent works [10]–[12] utilize phase changes in acoustic
signals for object movement tracking. Intuitively, these works
seem to be feasible for identifying a user’s inputs through
tracking finger movements in the attack scenario. However,
there exist several significant problems. First, these works are
only designed to track finger movements in a 2-D plane, but a
user’s input behaviors, i.e., keystrokes and finger movements
between keystrokes, are usually not in the same 2-D plane.
The phase-based methods would regard all keystrokes and
movements between keystrokes as finger movements in a 2-D
plane, i.e., treat all finger travels of the two kinds of input
behaviors as the moving distances in the same 2-D plane,
which induces significant cumulative errors in finger move-
ment tracking during inputs. Moreover, these finger tracking
methods need to determine the initial position of a finger
movement, so as to identify the absolute position of trajectory
in a finger movement. Due to limits in audio devices of smart-
phones, phase-based methods suffer significant performance
degradation when the distance between the smartphone and
tracked object increases (e.g., larger than 30cm) [10].
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In order to accurately identify users’ inputs on touch screen,
we propose the acoustic signal attenuation-based approach to
localize keystrokes on touch screen. Due to energy dispersion
of acoustic signals and absorption of propagation medium,
acoustic signals would attenuate during the propagation, which
can be utilized by an adversary to perform the keystroke
localization. Specifically, an acoustic signal (e.g., a 20kHz
acoustic signal which is inaudible for humans) is first emitted
from the speaker of an adversary’s smartphone with energy Ie,
then propagates through a distance d, and finally is received
by a microphone of the adversary’s smartphone with energy
Ir. The attenuation between the two acoustic signals is [16]:

Ir = Ie
k

d
eαd, (1)

where k is a normalization coefficient, α is the attenuation
coefficient. The attenuation coefficient α is affected by the
frequency of acoustic signals, temperature, relative humidity,
atmosphere, etc. Usually, these impact factors in the ambient
environment remain stable for an attack scenario, which hence
leads to a constant α [17].

When a victim keystrokes a key on QWERTY keyboard
of touch screen, the adversary can obtain two propagated
distances d1 = de + dr1 and d2 = de + dr2 of acoustic
signals based on Eq. (1), which propagate from a speaker,
then reflected by the victim’s keystroke finger, and finally to
two microphones, Mic1 and Mic2, respectively, as shown in
Fig. 1. Given the relative positions of the speaker as well as
two microphones on the smartphone, we can determine the
distances between the keystroke finger and two microphones
dr1 and dr2 through the ellipse-based method [10], [12]. Based
on the distances dr1 and dr2 , the adversary can construct two
circles, whose centers are Mic1 and Mic2 with radii of dr1
and dr2 respectively. Then, the adversary can obtain a unique
valid intersection point, i.e., the position of keystroke finger
relative to microphones of the adversary’s smartphone.

In the attack scenario, assume an adversary places his/her
smartphone in the same plane of a victim’s smartphone on
purpose. If the relative position between the two smartphones,
D, can be measured, the adversary can identify an exact
character for each keystroke. Since the victim’s smartphone
usually remains static relative to the adversary’s smartphone,
we can estimate the distance D through measuring time-of-
arrival leveraging acoustic beamforming technique [18].

III. SYSTEM DESIGN

In this section, we describe the system design of
KeyListener, which performs the keystroke eavesdropping
attack on QWERTY keyboard of touch screen leveraging the
audio devices on a smartphone.

A. System Overview

Fig. 2 shows the architecture of KeyListener. First,
KeyListener mitigates multipath reflections in received
acoustic signals so as to extract signals reflected from input
behaviors, and further segments received acoustic signals into
each input behavior window based on Doppler effect. Then,
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Fig. 2. Architecture of KeyListener.

based on the attenuation of acoustic signals, KeyListener
localizes finger keystrokes. Since ambient noises would in-
terfere received acoustic signals, each keystroke can only be
localized to a position area, i.e., keystroke range. To improve
the accuracy of keystroke localization, KeyListener further
tracks the distance and direction of a finger movement between
adjacent keystrokes to construct a movement sector, which
depicts all potential trajectories of the finger movement. By
intersecting the movement sector with keystroke range, the
localized keystroke area can be reduced. Since a keystroke
area covers one or multiple keys, KeyListener finally utilizes
a binary tree-based search approach to infer a keystroke
sequence for the adversary in a context-aware manner.

B. Capturing Acoustic Signals reflected by Input Behaviors

1) Mitigating Multipath Reflections in Acoustic Signals: In
a real environment, except for reflected acoustic signals from
keystroke fingers, acoustic signals received by microphones
of an adversary’s smartphone usually propagate through multi-
path reflections. To precisely localize keystrokes, it is essential
to mitigate multipath reflections in received acoustic signals
so as to capture signals reflected by keystroke fingers.

The acoustic signal s(t) received by a microphone usually
consists Line-Of-Sight (LOS) signal (i.e., the signal directly
propagated from speaker to microphones), reflected signals
from static and dynamic objects, ambient noises. Since signal
reflected from static objects and LOS signal remain stable
as time goes on, we employ the signal gradient of received
signals [14] proposed in our previous work, which depicts
the difference of frequency-domain signals between successive
time slots, i.e., g(t) = s(t)−s(t−1), to eliminate these signals.

To further mitigate multipath reflections from other dynamic
objects, we adopt FFT power [19] as the energy of received
acoustic signal. Based on the signal gradient, the energy of a
reflected signal Ir at time t is:

Ir(t) =

f0+Δf∑

f=f0−Δf

g(t), (2)

where f0 is the frequency of pilot tone, Δf is the frequency
band induced by a keystroke finger. Usually, the velocity of a
finger keystroke is around 0.05m/s [20], which is far less than
that of dynamic objects (e.g., normal body movements, etc.)
in [0.85, 3.40]m/s [21]. Hence, the acoustic signal induced a
finger keystroke is in a narrow frequency band near the pilot
tone. To capture such an acoustic signal, we set Δf as 30Hz
in the attack scenario.
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Fig. 3. Time-frequency signals induced by keystrokes and finger movements
when a victim inputs ‘hello’.

2) Segmenting Acoustic Signals into Input Behavior Win-
dows: During inputs, there are two kinds of input behaviors,
i.e., the keystroke and finger movement between adjacent
keystrokes. After acoustic signals reflected by fingers are
extracted from received signals, KeyListener needs to further
segment the acoustic signals into the two kinds of input
behavior windows.

Usually, finger movements induce significant Doppler shifts
on acoustic signals, which leads to asymmetric patterns in fre-
quency domain of received acoustic signals. On the contrary,
the projection of a keystroke’s finger travel on the direction
between the victim’s finger and adversary’s microphone is so
small that Doppler shifts induced by keystrokes are insignifi-
cant, which produces symmetric patterns in frequency domain
of received acoustic signals. Fig. 3 shows time-frequency
signals induced by keystrokes and finger movements when
a victim inputs ‘hello’. It can be seen that the patterns of
acoustic signals in frequency domain on keystroke of ‘h’, ‘e’,
‘l’, ‘l’ and ‘o’ are symmetric, while that on finger move-
ments between adjacent keystrokes are asymmetric. Therefore,
KeyListener can utilize Doppler effect of acoustic signals to
segment received signals into keystroke and finger movement
windows.

C. Localizing Keystrokes based on Attenuation of Acoustic
Signals

KeyListener utilizes the attenuation of acoustic signals
to localize keystrokes as presented in Section II. However, in
real environments, ambient noises would have a certain impact
on acoustic signals received by microphones. We assume
the energy of ambient noises is In, which induces the error
Δd of measured propagated distance (from the speaker of
an adversary’s smartphone, then reflected from a victim’s
keystroke finger, and finally received by a microphone of the
adversary’s smartphone). Since the propagated distance d of
acoustic signal decreases as the energy Ir of acoustic signal
received by a microphone increases based on Eq. (1), the
attenuation of acoustic signals including ambient noises can
be formulated as follows:

Ir ± In = Ie
k

d∓Δd
eα(d∓Δd). (3)

As shown in Fig. 4, errors on two propagated distances of
acoustic signals received by Mic1 and Mic2 induce two errors
Δdr1 and Δdr2 , i.e., errors on distances between the keystroke
finger and two microphones, respectively. Based on the two

CHAR
EN

CN

Mic1

Mic2 2Δdr2

D

dr1

dr2

2Δdr1

Fig. 4. Example of keystroke range for a localized keystroke.

errors, we reconstruct the keystroke localization through the
attenuation of acoustic signals. We find that the adversary can
only localize to an area for a keystroke, instead of localizing
to a precise point, as shown in the blue area of Fig. 4. We
denote the area of the localized keystroke as keystroke range.

In real environments, the ambient noise would interfere the
energy attenuation of reflected acoustic signals received by
microphones, which introduces significant keystroke range in
the acoustic signal attenuation-based keystroke localization.
Based on Eq. (3), the error Δd increases as the propagated
distance d of reflected signal increases, which indicates that
the keystroke range increases as the distance D between
smartphones of the adversary and victim increases. Therefore,
it is necessary to reduce the keystroke range for inconspicuous
and precise keystroke eavesdropping attacks.

D. Improving Accuracy of Keystroke Localization based on
Input Behaviors

As the analysis above, there still exist significant errors (i.e.,
keystroke range) in keystroke localization based attenuation of
acoustic signals. To improve accuracy of keystroke localiza-
tion, KeyListener needs to reduce the keystroke range.

1) Tracking Finger Movements based on Phase Change
and Doppler Effect: During inputs, there are two kinds of
input behaviors, i.e., the keystroke and the movement between
adjacent keystrokes. The finger movement between keystrokes
can be taken into consideration for improving the accuracy
of keystroke localization. Specifically, if the distance and
direction of the movement between adjacent keystrokes can be
tracked, we can identify the position of the current keystroke
based on the previous keystroke position.

Since a finger movement between keystrokes is in a 2-D
plane, the distance of finger movement can be tracked through
phase change. Specifically, the acoustic signal emitted from the
speaker of an adversary’s smartphone is se(t) = A cos(2πf0t),
where A and f0 are the amplitude and frequency of the pilot
tone respectively. After propagating through a distance d and
reflected from the finger, the acoustic signal received by the
microphone of the smartphone is sr(t) = A′ cos(2πf0t −
2πf0d/c), where c is the speed of acoustic signals. To extract
the phase change induced by finger movement, we multiply
the received signal with the emitted signal, i.e.,

sr(t)×se(t) = A′ cos(2πf0(t−d/c))×A cos(2πf0t) (4)

=
1

2
AA′(cos(−2πf0d/c)+cos(2πf0(2t− d/c))).
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Fig. 5. Doppler profiles of acoustic signals under eight basic directions of
finger movements.

Then, we apply a lowpass filter to remove the high-frequency
term, i.e., the second term in Eq. (4). After that, the phase
change induced by the finger movement can be extracted as
φ = −2πf0d/c. Since φ changes by 2π as the distance of
finger movement changes with a wavelength of the acoustic
signal λ = c/f , we only obtain the phase change within
2π instead of the whole phase change induced by the finger
movement. Fortunately, the starting and ending positions can
be determined based on the attenuation of acoustic signals
in advance, so the number of phase cycle can be derived.
After that, we can calculate the whole phase change induced
by finger movement. Based on the whole phase change, the
propagating distance can be measured, i.e.,

d = −φt − φ0

2π
× c

f0
, (5)

where φ0 and φt are phase changes when the finger is
at the starting and ending positions of a finger movement
respectively.

To track the finger movement between keystrokes, we need
to track not only the distance, but also the direction of finger
movement. However, phase-based methods cannot achieve sat-
isfactory accuracy in tracking direction of finger movements,
and the relative errors are unpredictable. To predict such
an error of direction tracking, we utilize Doppler effect of
acoustic signals to track the direction of each finger movement.
During inputs, the finger can move from a key to another
one in various directions. However, it is difficult to enumerate
all directions of finger movements during inputs. Hence, we
only consider to track eight basic directions of finger move-
ments, i.e., up, down, left, right, top-left, top-right, bottom-
left, and bottom-right. Different finger movement directions
induce unique Doppler profile of acoustic signals received by
microphones. Fig. 5 shows Doppler profiles of acoustic signals
received by two microphones under eight basic directions of
finger movements. We can see that Doppler shifts induced
by eight basic directions are significantly distinguishable from
each other. Thus, KeyListener can track an approximate
direction of a finger movement, whose errors are in the range
of two contiguous directions.

Based on the tracked distance and direction of finger move-
ments, we construct a movement sector as shown in the orange
area of Fig. 6(a). The position of a keystroke finger after

EN

CN
CHAR

Tracked 

Direction

Movement Sector

(a) Movement sector.

EN

CN
CHAR

P

(b) Keystroke range reduction.

Fig. 6. Illustration of improving the accuracy of keystroke localization based
on input behaviors.

the movement would lie on a point of the movement sector’s
arc, as shown in the red arc of Fig. 6(a). We can utilize the
movement sector to reduce the keystroke range in acoustic
signal attenuation-based keystroke localization.

2) Reducing Keystroke Range based on Tracked Finger
Movements: Fig. 6(b) illustrates the accuracy improvement
of keystroke localization based on input behaviors. Assume
a victim first clicks a key s and then clicks another key
j on QWERTY keyboard of touch screen. The adversary
first localizes the two keystrokes based on the attenuation of
received acoustic signals, and obtains two keystroke ranges
KR(s) and KR(j) covering s and j respectively, as shown
in the two blue areas of Fig. 6(b).

Then, to depict the finger movement between keystrokes,
a movement sector is determined through phase change and
Doppler effect. However, since we can only localize the
keystroke to a keystroke range KR(s), the center of movement
sector could be an arbitrary point in KR(s). For example,
after a finger moves between keystrokes on s and j, a point
P in KR(s) would move to an arbitrary point in the arc of
movement sector, as shown in the red arc of Fig. 6(b). The
movements of all points in KR(s) are similar to that of the
point P . Hence, an area S after the movement is constructed
as shown in the yellow area of Fig. 6(b), which contains all
potential points after the movement, i.e., arcs of all sectors
whose centers lie in KR(s). Finally, KeyListener intersects
S with KR(j) to reduce the keystroke range for improving
the accuracy of keystroke localization.

In the proposed keystroke localization, the keystroke range
merely depends on the attenuation of acoustic signal reflected
by the keystroke, and the movement sector only depends on
the finger movement between two adjacent keystrokes through
phase change and Doppler effect of acoustic signals, which
are both independent of other keystrokes and movements.
Therefore, there is no cumulative error during the whole
keystroke localization.

E. Inferring Keystrokes in Context-aware Manner

Through the approach above, KeyListener can only local-
ize a keystroke to a keystroke range, which usually covers one
or multiple keys on a keyboard. We denote keys covered by
a keystroke range as character candidates of the keystroke.
Since the input of a victim is usually meaningful, the input
can be inferred with a dictionary in a context-aware manner.
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1st Keystroke: CHAR1={c1, ..., ci1}
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Fig. 7. Illustration of context-aware keystroke inference.

We present a binary tree-based search approach to generate
all possible inference results, i.e., word candidates, for adver-
saries, as shown in Fig. 7. Assume there are n keystrokes in
a keystroke sequence. For the ith keystroke in the sequence,
there is a set, CHARi, including all the character candidates
of the ith keystroke. From the given dictionary, KeyListener
first generates a word list WL1, in which the first character of
the words is in CHAR1. Then, from the WL1, KeyListener
searches all words whose second character is in CHAR2, to
generate a word list WL2. By analogy, to generate a word
list WLi, KeyListener finds the words whose ith character
is in CHARi, from the word list WLi−1. Until CHARn is
used for searching, KeyListener can generate a word list
WLn including all possible word candidates for adversaries.
Through such an approach, KeyListener can infer keystrokes
in a context-aware manner.

The computational complexity of the approach is O(ncL),
where n is the number of keystrokes in a keystroke sequence,
c is the number of character candidates in a keystroke, and
L is the length of the dictionary. Since the values of c and
L are usually small, the computational complexity is approx-
imately O(n). Therefore, the proposed keystroke inference is
lightweight and computationally efficient for smartphones.

IV. EVALUATION

In this section, we evaluate the performance of
KeyListener under collected data in real environments.

A. Experimental Setup & Methodology

We implement KeyListener on a Galaxy S4 with Android
5.1.1 as the smartphone of an adversary. The pilot tone of
acoustic signals emitted from the smartphone is set as 20kHz.
We recruit 24 volunteers, including 12 males and 12 females
whose ages range in [18, 45], to conduct our experiments.
The volunteers are required to use one of four smartphones
with different screen sizes, i.e., a 4.7-inches iPhone 7, a 5.2-
inches Huawei P7, a 5.5-inches iPhone 7 Plus and a 7.0-inches
Huawei Honor X2. We conduct the experiments in three real
environments, i.e., sitting in a library (quiet and a few people
walking in the surrounding), sitting in a canteen (very noisy
and many people walking in the surrounding), and queuing in a
cafe (less noisy and some people walking in the surrounding).
In each environment, the adversary’s smartphone is placed in
three different positions relative to the victim, i.e., left, right,
and opposite respectively. The distance between smartphones
of the adversary and victim ranges in [45, 60]cm. We select
5,000 most frequent words [22] for the volunteers, and each
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Fig. 8. Overall performance of KeyListener under different environments.

volunteer is required to randomly select 500 words from them
for inputting. The volunteers are unaware of the experimental
purposes, and thus hold the smartphones and input on touch
screen following their own habits.

To evaluate the performance of KeyListener, we define
several metrics as follows.

Top-w Word Accuracy. Given w inferred word candidates,
the top-w word accuracy is defined to measure the overall
performance of keystroke inference. Assuming the number of
texts during inputs is k, the top-w word accuracy is defined
as Aw = i

k , where i is the number of inferences in which the
top-w word candidates contain the ground truth.

Number of Word Candidates. Assume a victim inputs n
keystrokes as a word. For the ith keystroke, KeyListener
provides ci character candidates. For the inputted word, the
number of word candidates is defined as Wn = Πn

i=1ci.
Confusion Matrix. Each row and each column of the matrix

represent the actual keystroke and the identified keystroke
of KeyListener respectively. The ith-row and jth-column
entry of the matrix shows the percentage of samples that are
identified as the jth key while actually are the ith key for all
samples that actually are the ith key.

F1-score. F1-score is a measure combining precision and
recall, which evaluates the performance of single keystroke
identification. F1-score is defined as F1-scorek = 2× Pk×Rk

Pk+Rk
,

where Pk and Rk are the precision and recall of identifying
key k respectively. Precision of identifying key k is defined as
Pk = mT

k /(m
T
k +mF

k ), where mT
k is the number of keystrokes

correctly identified as the key k, mF
k is the number of

keystrokes mistakenly identified as the key k while are actually
other keys. On the other hand, given nk keystrokes of a key
k, Recall of identifying key k is defined as Rk = mT

k /nk.

B. Overall Performance of KeyListener

Overall Performance. We first evaluate the overall per-
formance of KeyListener. For each keystroke inference,
KeyListener selects top-w word candidates based on the
word frequency of all word candidates. Fig. 8(a) shows top-1
to top-10 word accuracies of KeyListener under three real
environments. We can see that the top-1 word accuracies in
the library and canteen are both approaching 50%, while that
in the cafe is around 40%. The top-10 word accuracies in the
library and canteen can both approach 90%, while that in the
cafe is 81.3%. The performance of KeyListener in the cafe
is a little lower than that in other two environments. This is
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(a) Distances between smartphone-
s of the adversary and victim.
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(c) Relative positions to the victim.
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Fig. 9. Top-w word accuracy of KeyListener under different impact factors.

because the victim queuing in the cafe intends to prevent others
from seeing his/her inputs on touch screen, which depicts
an obstruction between the adversary and victim. We also
evaluate top-w error rate of KeyListener under three real
environments. The result is similar to the previous analysis,
as shown in Fig 8(b). In general, KeyListener can achieve
satisfactory performance of keystroke inference in the three
real environments.

Impact of Distance between Smartphones of Adversary
and Victim. Since we utilize propagation characteristics of
acoustic signals to identify keystrokes on touch screen, the
distance between smartphones of the adversary and victim, i.e.,
adversary-victim smartphone distance, would have a certain
impact on the performance of KeyListener. Fig. 9(a) shows
the top-1 to top-10 accuracies of KeyListener under different
adversary-victim smartphone distances. We can observe that
the top-w word accuracies of KeyListener all decrease as
the distance increases. When the distance increases from 45cm
to 60cm, the top-2 word accuracy of KeyListener decreases
from 82.2% to 49.1%. This is because that ambient noises have
a significant impact on the measurement of acoustic signal
energy as the distance increases. However, as w increases
from 2 to 10, the accuracy of KeyListener increases from
49.1% to 79.7% when the distance is 60cm, which indicates
KeyListener can achieve acceptable performance under dif-
ferent adversary-victim smartphone distances.

Impact of Smartphone’s Screen Size. Various screen sizes
of smartphones lead to different keyboard sizes on touch
screen. Thus, we evaluate the performance of KeyListener
under four different screen sizes. Fig. 9(b) shows the top-1 to
top-10 word accuracies of KeyListener under four different
screen sizes. It can be observed that the top-w word accuracies
are similar under four different screen sizes. This is because
as the increase of screen sizes, both the key size and the
width of keyboard increase. Although the increase of key size
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Fig. 10. Performance of KeyListener without context-aware inference
under different impact factors.

leads to higher keystroke localization accuracy, the increase
of keyboard width depicts larger distance between some keys
and the adversary’s smartphone, which induces larger errors
of keystroke localization.

Impact of Relative Position. We also conduct an exper-
iment to evaluate the performance of KeyListener under
different relative positions between smartphones of the ad-
versary and victim, i.e., left, right, opposite. Fig. 9(c) shows
the top-1 to top-10 word accuracy of KeyListener under
different relative positions. We can observe that the top-w
word accuracies under three relative positions are all similar.
Although the top-w word accuracy under the opposite situation
is a little lower than that under other two positions, the
difference is not significant. For example, the top-10 word
accuracy under opposite position is only 2.47% and 3.4%
lower than that under left and right positions respectively.

Impact of Input Manner. In our experiment, the volunteers
input following their own habits. Hence, except for single-
hand input on smartphones, some volunteers are used to
inputting in a double-hand manner. Also, typing speeds are
various for different volunteers. We evaluate the performance
of KeyListener under different input manners, including
single-hand and double-hand manners, as well as different
typing speeds (i.e., high speed: larger than 130 keystrokes
per minute (KPM), medium speed: in the range of [90, 130]
KPM, and low speed: less than 90 KPM). Fig. 9(d) shows top-
1 to top-10 word accuracies of KeyListener under different
input manners. It can be seen that the top-w word accuracy
under a double-hand manner is a little lower than that under
a single-hand manner. This is because there are fewer finger
movements under a double-hand input than that under a single-
hand input. However, the difference between top-w word
accuracies of single-hand and double-hand input manner is not
significant. For example, top-5 word accuracies under the two
input manners are 90.7% and 87.8% respectively. Moreover,
we can see that the top-w word accuracies under different
typing speeds are similar. For example, the differences of the
top-5 word accuracy between high and low speed are 1.4% and
2.0% under single-hand and double-hand manner respectively.

C. Performance of KeyListener without Context-aware In-
ference

Except for meaningful texts, a victim sometimes inputs ran-
dom texts (e.g., password), which cannot be inferred through
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Fig. 11. Confusion matrix of single keystroke identification under different
positions when the adversary-victim smartphone distance is 55cm.

a dictionary. To analyze the performance of KeyListener
under random input, we conduct an experiment, in which
KeyListener regards victims’ inputs as random inputs, and
only provides all possible combinations, i.e., word candidates,
as identified keystrokes without context-aware inference.

Fig. 10(a) shows the number of word candidates under
different adversary-victim smartphone distances and keystroke
lengths. It can be observed that the numbers of word candi-
dates under different keystroke lengths all decrease rapidly
as the decrease of adversary-victim smartphone distance. For
example, when the distance decreases from 60cm to 55cm,
the number of word candidates decreases from 8,712 to 1,023
under 10 keystrokes. This is because the keystroke range
significantly decreases as the smartphone distance decreases.
Also, the number of word candidates increases as the keystroke
lengths increase. Usually, the length of a password is less than
8-digit. Under such a situation, KeyListener can provide
less than 300 word candidates when the distance is less than
55cm. As a keystroke eavesdropping attack, KeyListener can
achieve satisfactory performance in keystroke inference.

Recently, most passwords in mobile devices are inputted
through 9-key PIN keyboard. To evaluate the performance
of KeyListener in password eavesdropping attack, we im-
plement a special version of KeyListenter, which localizes
each keystroke on 9-key PIN keyboard of touch screen. Fig.
10(b) shows the accuracy of the special KeyListener under
different adversary-victim smartphone distances and different
lengths of keystrokes. We can see that the special version of
KeyListener can achieve above 80% accuracy for all smart-
phone distances and lengths of keystrokes. This is because the
size of a key on 9-key PIN keyboard is far larger than that on
QWERTY keyboard. The keystroke range can precisely cover
one key during each keystroke localization.

D. Performance of Single Keystroke Identification

We evaluate the single keystroke identification performance
of KeyListener under different relative positions between
smartphones of adversary and victim. Under each relative
position, each volunteer is required to input 100 characters
from 26 English characters following their own habits.

Fig. 11 presents the confusion matrix of the single keystroke
identification under three relative positions, i.e., left, right and
opposite, when the distance between smartphones of the ad-
versary and victim is 60cm. It can be seen from Fig. 11(a) that
keystrokes on some keys have a lower keystroke identification
accuracy, such as ‘k’, ‘p’, etc., and the average identification
accuracy of keystrokes on these keys is 25.1%. This is because
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Fig. 12. F1-score of single keystroke identification under different adversary-
victim smartphone distances.

in this attack scenario, the adversary’s smartphone is placed
in the left of the victim’s smartphone, i.e., these keys are
far from the adversary’s microphones, which leads to low
identification accuracy. On the other hand, keystrokes on other
keys, such as ‘a’, ‘s’, etc., have much higher accuracy, and
the average identification accuracy of keystrokes on these keys
can achieve 96.2%. This is because these keys like ‘a’ and
‘s’ are much near the adversary’s microphones, which depicts
higher identification accuracy. Fig. 11(b) and 11(c) show the
confusion matrices of the single keystroke identification under
the right and opposite positions respectively, which present
similar results as that in Fig. 11(a).

We further evaluate the impact of distance between smart-
phones of adversary and victim on the single keystroke iden-
tification. In this evaluation, the adversary’s smartphone is
placed on the left of the victim’s smartphone. Fig. 12 shows
F1-score of single keystroke identification for 26 characters
under four adversary-victim smartphone distances. We can ob-
serve that F1-scores of single keystroke identification decrease
as the distance between smartphones of adversary and victim
increases. When the distance is 60cm, the average F1-score
for the 26 characters is 48.0%. However, the average F1-score
rapidly increases to 68.6% as the distance decreases to 55cm
which is still an inconspicuous distance for the attack. This
indicates KeyListener can achieve good performance at an
inconspicuous distance. Meanwhile, it can be seen that F1-
scores of single keystroke identification on keys far from the
adversary are significantly lower than that on keys near the
adversary, which is consistent with the analysis above. We
also evaluate F1-scores of single keystroke identification in
right and opposite positions, which present similar results.

V. RELATED WORK

In this section, we review existing works about side-channel
attacks on inputs and acoustic signal-based applications.

Attacks on Input of Physical Keyboard. Currently, most
active research efforts [3]–[6] focus on keystroke eaves-
dropping attacks on physical keyboards. [3], [4], [6] utilize
the acoustic emanation of keystroke sounds to identify vic-
tims’ keystrokes. However, the audible sounds induced by
keystrokes are easily affected by ambient noises. [4], [5] utilize
motion sensors on smartwatches to localize keystrokes on
physical keyboards, but the adversary is required to involve
a direct eavesdropping attack, i.e., have access to victims’
smartwatches, which usually arouses victims’ vigilances.
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Attacks on Input of Touch Screen. Recently, more people
input private information on touch screen of mobile devices.
This motivates some works studying on keystroke eavesdrop-
ping attacks on touch screen. Some works [7], [8] reveal
that motion sensors on victims’ smartphones would leak their
inputs on touch screens. However, all these works are direct
eavesdropping attacks, i.e., require sensor data on victims’ de-
vices compromised to provide side-channel information about
keystrokes for the adversary, which limits the impact of such
attacks. More recent work [9] utilizes keystroke patterns in CSI
of WiFi signals to detect victims’ inputs on PIN keyboard of
touch screen. Although this work is an indirect eavesdropping
attack, its application scenario is constrained to the coverage
of WiFi infrastructure, and the attack is only for 9-key PIN
keyboard instead of QWERTY keyboard.

Acoustic Signal-based Applications. Recently, acoustic
sensing attracts considerable attention. Previous studies utilize
acoustic signals for gesture recognition [21], [23], tracking
[10]–[12], and even user authentication [14], [15]. Among
these works, [10]–[12] propose acoustic-based techniques to
track a continuous finger movement in a 2-D plane. However,
a user’s input behaviors, including keystrokes and finger
movements between adjacent keystrokes, are in a 3-D space.
Hence, it is difficult to directly adopt these works for keystroke
localization through tracking finger movements.

Unlike existing works, our work propose to infer keystrokes
on QWERTY keyboard of touch screen through propagation
characteristics of acoustic signals, which is an indirect eaves-
dropping attack and robust to various environments, as well
as require no additional infrastructures.

VI. CONCLUSIONS

In this paper, we demonstrate acoustic signals from a
smartphone can be used to implement a side-channel attack,
KeyListener, which can infer keystrokes on QWERTY key-
board of touch screen. In particular, we first investigate the
attenuation of acoustic signals, and find that the attenuation
of acoustic signals can be used to localize each keystroke
during inputs. Then, to improve the accuracy of keystroke
localization, we track the finger movements during inputs
through phase change and Doppler effect of acoustic signals to
reduce errors induced by ambient noises. Finally, we present
a binary tree-based search approach to infer the victim’s
continuous keystrokes in a context-aware manner. Extensive
experiments demonstrate that KeyListener can achieve sat-
isfactory performance on not only meaningful input inference
in a context-aware manner, but also random input identification
without inference in real environments. Moving forward, we
are interested in further relaxing the relative position between
smartphones of adversary and victim so that the adversary can
perform the keystroke eavesdropping attack in more scenarios.
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